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Abstract. Cellular	 Neural	 Networks	 (CNNs)	represent	 one	 of	 the	 most	 effective	 computational	
frameworks	for	modeling	complex	spatiotemporal	pattern	formation	in	image	processing	systems.	The	
dynamic	 behavior	 of	 CNN	processing	units	 is	 formally	 governed	by	 systems	 of	 nonlinear	 differential	
equations,	 which	 articulate	 the	 state	 evolution	 of	 individual	 cells	 within	 the	 network	 topology	 A	
specialized	 variant,	Reaction-Diffusion	 CNNs	 (RD-CNNs),	 extends	 this	 paradigm	 by	 incorporating	
reaction-diffusion	dynamics	inspired	by	biological	systems.	This	architecture	demonstrates	remarkable	
emergent	 properties,	 including	 the	 spontaneous	 generation	 of	spiral	 wave	 patterns	and	autowave	
propagation	 through	 locally	coupled	processing	units.	Such	phenomena	enable	RD-CNNs	to	simulate	
self-organizing	patterns	observed	in	natural	systems,	such	as	chemical	oscillators	and	neural	tissue 
Keywords: Nonlinear dynamics; CNNs based chaos; RD-CNNs; PWL function. 

 
 
 
 
1. INTRODUCTION  
 

Numerous artificial, physical, chemical, and biological systems can be effectively built utilizing 
Cellular Nonlinear Networks (CNNs).  Moreover, CNNs represent a strict blocks for complex systems such 
as image processing tasks [1].  The concept of templates, which symbolizes local activity, is essential for 
comprehending the functionality of CNNs, hence facilitating the design and modeling of complicated 
systems.  It has extensive applications in image processing, robotics, and biological recognition [2, 3].  It 
also possesses an enhanced cerebral objective [4, 5].  Additionally, it can serve as a model for executing 
patterns, spiral, auto, scroll waves, and spatiotemporal chaos.  Given that these recent uses are more 
expansive and not exclusively linked to neural networks, A CNN is a spatial arrangement of locally 
interconnected cells.  Each cell functions as a dynamic model characterized by an input, an output, and a 
state that evolves according to defined dynamical principles.  CNN represents an innovative category of 
information-processing systems.  It is an extensive nonlinear circuit that processes signals in real-time [2].  
The CNN comprises a vast array of systematically organized circuit clones, referred to as cells, which 
interact directly with neighboring cells and indirectly with the entire CNN array through the propagation of 
continuous-time dynamics inside the cellular nonlinear network.  The conventional CNN functions as a 
parallel analog processor, which manages and produces analog signals for the reproduction and emulation 
of intricate systems [2].  The cloning templates are crucial to the principle of local activity.  Furthermore, 
RD-CNN serves as a crucial foundation for the intricate dynamics of physical, biological, and chemical 
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systems, particularly for emergent and complicated behavioral patterns[4].  Perez-Munuzuri et al. delineated 
a two-dimensional CNN array of connected states for spatial recognition [7].  Tang et al. suggested a 
biological imaging approach utilizing CNNs [8].  Roska and Chua in [9] have affirmed that CNN is a potent 
paradigm in both artificial and biological applications.  Alaa Zaghloul et al. introduced a key generator 
utilizing one-way coupled map lattice (OCML) for resilient multimedia encryption, including images and 
audio [10].  Karthikeyan Rajagopal et al. investigated the Hindmarsh–Rose neuron model, focusing on the 
development of spiral waves within the network, influenced by specific parameters and their coupling 
strength [11].  Ch. K., Volos et al. in [12] proposed an encryption system founded on two distinct 
synchronization or coupling events.  Price et al. introduced reaction-diffusion equations to model biological 
phenomena [13].  Jankowski and Wanczuk proposed CNN templates for image processing to enhance 
distorted images [14].  Setti and Thiran both presented a CNN model to establish spatial and spatiotemporal 
patterns [15].  In [16], Guodong et al. introduced a convolutional neural network for edge identification, 
referred to as EDCNN, to delineate the edges of radar cloud pictures.  Numerous instances fall into a novel 
category of dynamical systems based on convolutional neural networks and template training through 
optimization methods [17-21]. 

 This research presents system models utilizing cellular nonlinear networks (CNNs) to address 
image processing challenges such as noise reduction, corner recognition, and edge extraction.  The reaction-
diffusion cellular nonlinear networks (RD-CNNs) are fundamental to the emergence of pattern formations, 
autonomous waves, and spirals. 

 
 

2. CNNS THEORY AND METHODS 
 
The CNNs exhibit the most advantageous characteristics [2] as follows: 

1. It is a continuous-time characteristic that enables real-time signal processing, which is 
inadequate in the digital domain. 

2. The local linking characteristic renders it appropriate for VLSI implementation. 
 

2.1. Definition 1: Basic CNN Structure 
A CNN composed of M×N dimensions that describe of CNN structuew where i = 1, 2, ..., M, j = 1, 

2,..., N, see Fig. (1).There are applications where M≠N. 
 

 
Fig.1 Schematic representation of 𝑴×𝑵 CNN of regular 2D-array cells with its local linkage property in Cartesian 

coordinates. 
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For example, 1 × N CNN rectangular array for special purposes and 5×512 CNN would be more 
suitable for imaging or copying [2]. 

 
 
2.2. Definition 1: Basic CNN Structure 
 
The separated CNN cell is used virtually in practical implementation in the CNN chip. The state 

equation of an isolated cell can be described as following [2, 6]: 
 
 
𝑑𝑿!"
𝑑𝑡 = 	 − 𝑿!" + 𝑎!" 	𝒀!" + 𝑏!"	𝒖!" + 𝒁!" 																																																																																										(1) 
 
 
Where: X_(ij )∈R is called state, Yij ∈R is called output, andY_ij=f(X_ij  ), u_ij  ∈R is called input, 

z_ij  ∈ R is called the threshold of cell C (i,j ), a_ij is the center matrix of the feed backward operators or 
synapses. And b_ij is the center matrix of the feedforward operators or synapses, respectively. The output 
equation of the standard isolated cell is given by: 

 
 

𝑓(𝑋!")	=
$
%
3|𝑋𝑖𝑗 + 1| − 7𝑋!" 	− 	178 = 	9

1										𝑋!" 	≥ 1
𝑋!"  					7𝑋!"7 	< 1
−1											𝑋!" ≤ −1

                                                     (2) 

 
 
 

Fig. (2) (a) shows the output equation of CNN, and Fig. (2) (b) shows isolated cell input, output, 
threshold, and state. 
 

 
 
 

Fig. (2) (a) The output of the isolated cell of PWL function and (b) Isolated cell with input, threshold, and state. 
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2.3. Definition 3: Spherical Effect 
 
Any CNN cell C_ij is, by a qualifier, combined locally to its surrounding cells that found in a 

spherical effect S_ij (r) of the radius (r), [2, 6]as: 
 
 

𝑆!" = >𝐶!": max(|𝑘 − 𝑖|, |𝑙 − 𝑗|) ≤ 𝑟, 1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑁J																																																																		(3) 
 

 
Fig. (3)(a) illustrates an array with a radius r= 1. It is commonly called a neighborhood of radius 1, or a 3×3 
spherical effect. In such matter, the center cell is companied just “eight” closest neighbor cells C_kl . Where 
(k,l) = (i + 1,j + 1),(i + 1,j),(i+1,j - 1),(i,j + 1),(i,j - 1),(i –l ,j + 1),(i - 1,j) and (i - 1,j - 1). A 5 × 5 sphere 
(corresponding to r = 2) of effect expands the combination up to 24 cells as shown in Fig. (3)(b). Therefore, 
generally it will refer to S_r  (i ,j) as a (2r+1)×(2r+1)  neighborhood. 

 

 
 

Fig. (3) (a) An array with a radius r=1 (3×3) neighborhood and (b) An array with a radius r=2 (5×5 ) neighborhood. 
 
 
 
 
 

 
2.4. Definition 4: Local Couplings Effects 
 

Generally, in many cases, the input u_kl and the output y_kl   of the neighbor cells belonging to the 
center cell Cij as shown in Fig. (4) (a) and (b). Consequently, it's so suitable to represent every cell in Fig. 
(4) as a neuron in which the state dynamics are coupled to the cell C_ij  . This representation is regarded as 
a synopsis model of actual neuron cells. 
The input u_ij of every neighbor cell C_kl “senses” by a synapse and gives a contribution weight b_(kl ) 
u_kl in the center cell C_ij; therefore, the fundamental contributions that incoming from all the other "eight" 
closest cells are as: 
 
𝐵3𝑢!"8 = N 𝑏&'𝑢&' 																																																																																																																																		(4)

(!"∈*#$,&',!"
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As a result, it indicates to “eight” synapses in Fig. (4) (a) as "control" or "feedforward" templates.  
Similarly, the output y_kl of every closest cell C_kl “senses” by new synapse which is given by: 

 
𝐴3𝑦!"8 = N 𝑎&'𝑦&'

(!"∈*#$,&',!"

																																																																																																																																			(5) 

 
The C_ij conducts both weights, which are b_kl u_kl and a_kl y_kl, respectively, from the eight 

neighbor cells C_kl as in Fig. (4) (a) and (b). Now, by coupling Eq.s (4) and (5) with the right-hand side of 
Eq. (3), obtaining the standard CNN Eq. (6) given later in this section. 

 

 
 

Fig. (4) (a) The weights effect of feedforward synapses and (b) The weights effect of feedback synapses, that whole 
contributions are incoming from all the other “eight” closest cells 

 
 
 

 
 
2.5. Definition5: Spaced-Invariant CNN 
If the templates are identical for each cell, they are termed space-invariant; otherwise, they are 

classified as space-variant.  Most CNN applications employed space-invariant CNNs with a 3×3 
neighborhood (spherical effect r=1).  Considering the standard cell c(i,j)∈ 〖S 〗_r (i,j) as delineated in [1]: 

 
 

 

𝑿̇!" = −𝑿!" + ∑ 𝐴(𝑖, 𝑗; 𝑘, 𝑙)𝑦&' +-(&,')∈*#$(!,"),&',!" ∑ 𝐵(𝑖, 𝑗; 𝑘, 𝑙)𝑢&'-(&,')∈*#$(!,"),&',!" + 𝑍!" 													(6)		
	
where	i	=	1,2,...,M,				j	=	1,2,...,N.	
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1. Analysis of the feedback synapses operator 𝐴(	𝑖, 𝑗; 	𝑘, 𝑙), in view of the space-invariance: 
 
 

 
1. The input synaptic operator 𝐵(𝑖, 𝑗; 𝑘, 𝑙)  similar to the A template. One can write:  

Now, by using the same notations, the space-invariance CNN can be described by: 
𝑥̇!" = −𝑥!" + 𝑨⊛𝒀𝒊𝒋 + 𝑩⊛𝑼𝒊𝒋 + 𝑍																																																																																												(9) 
 
So, one can decompose (9) to the following: 
 

 
 
It is called the rate function, and g(x_ij)  is called the driving point (DP), and w_ij (x_ij,t) called 

Offset level, respectively. Fig. (5) shows such dynamic behavior of Eq.(10). 
 
 

N 𝐴(𝑖, 𝑗; 𝑘, 𝑙)𝑦&' = N N 𝐴(𝑖, 𝑗; 𝑘, 𝑙)𝑦&'
∣"3'∣4$∣&3!∣4$5(&,')∈*%(!,")

 

= 𝑎3$,3$	𝑦!3$,"3$ + 	𝑎3$,6𝑦!3$," + 	𝑎3$,$𝑦!3$,"7$ + 𝑎6,3$𝑦!,"3$ + 	𝑎6,6	𝑦!," + 𝑎6,$	𝑦!,"7$

+ 	𝑎$,3$𝑦!7$,"3$ + 	𝑎$,6𝑦!7$," + 	𝑎$,$𝑦!7$,"7$ = N N 𝑎&,'𝑦!7&,"7$

$

'83$

$

&83$

 

(7) 

N 𝐵(𝑖, 𝑗; 𝑘, 𝑙)𝑦&' = N 	
∣&3!∣4$

N 𝐵(𝑖, 𝑗; 𝑘, 𝑙)𝑢&'
∣"3'∣4$5(&,')∈*%(!,")

	

=		𝑏3$,3$	𝑢!3$,"3$ + 	𝑏3$,6𝑢!3$," + 	𝑏3$,$𝑢!3$,"7$𝑏6,3$𝑢!,"3$ + 	𝑏6,6	𝑢!," +
		𝑏6,$	𝑢!,"7$ + 	𝑏$,3$𝑢!7$,"3$ + 	𝑏$,6𝑢!7$," + 	𝑏$,$𝑢!7$,"7$	

= N N 𝑏&,'𝑢!7&,"7$

$

'83$

$

&83$

	

(8) 

𝑥̇!" = −𝑥!" + 	𝑎66	𝑓3𝑥!"8 + 	𝑨⊛ 𝒀𝒊𝒋 + 𝑩⊛𝑼𝒊𝒋 + 𝑍	 
	 

 
 

ℎ!"3𝑥!"; 𝑤!"8 = 𝑔3𝑥!"8 + 𝑤!"(𝑥!" , 𝑡)	

(10) 
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3. RD-CNNS 
 

Spatiotemporal patterns are ubiquitous in physics, biology, and chemistry, frequently arising 
spontaneously in diverse systems.  These features are fostered extensive mathematical modeling, resulting 
in an enhanced comprehension of many mechanisms.  Partial differential equations of diffusion type 
facilitate pattern creation in several live cells.  Certain autonomous CNNs provide an exceptional 
approximation of nonlinear PDEs, yielding real-time solutions for certain systems [22].  The CNN model's 
most remarkable feature is its utilization of the cooperative behavior inherent in dynamic nonlinear circuits 
to accomplish complicated and comprehensive tasks.  The creation of 3D-CNN dynamics demonstrates the 
emergence of compatible surprising shapes, and RD-CNN is appropriate for reintroducing complex 
phenomena in bioscience, neuro-dynamics, and chemistry.  CNN serves as an effective medium for 
elucidating shapes and patterns related to the emergence of dynamics in systems, as well as for bridging the 
gap between circuitry and art [23].  The renowned partial differential equation of reaction-diffusion. 

 
 

𝜕𝒖
𝜕𝑡 = 𝐹(𝒖) + 𝐷𝛻%𝒖																																																																																																																																					(11) 

 
 

 
 
 

Fig. (5) The dynamics route of both the state x_ij and output Y_ij with a zero offset level (w_ij=0). 
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Fig. (6) Schematic depiction of a 3D-CNN array in Cartesian coordinates i, j, k, where each cube signifies an individual 
cell that interacts physically with others.. 

 

Let u∈RNu∈RN and F∈RNF∈RN, with DD denoting a diagonal matrix that models linked diffusion, 
and ∇2u∇2urepresenting the Laplacian operator in R2R2. Various approaches exist to estimate the discrete 
form of the Laplacian operator using convolutional neural network (CNN) synaptic laws, typically involving 
a carefully designed A-template. The 3D-CNN framework necessitates a comprehensive examination of 
both the architectural configuration and its emergent dynamical behavior. The complex internal dynamics 
of the system can be interpreted through the integration of 3D-CNN-based shape analysis. Notably, a 
divergence in the capacity of CNNs to model shape evolution has been observed, where the evolving shape 
reflects a fractional state within the emergent behavior of nonlinear dynamical systems. Figure 6 provides 
a graphical illustration of the 3D-CNN structure, where each computational cell is represented as a small 
cube and the interconnections between them are visually depicted, as discussed in [23]. 

 
𝑐!,",&3𝒙!"&8 = 𝐷𝛻!"&% 𝒙																																																																																																																																											(𝟏𝟐) 

 
 

The discrete Laplacian operator in a three-dimensional spatial configuration is defined by the relation [23]. 
 
𝛻!"&% 𝒙 = 𝒙!3$,!,& + 𝒙!7$,",& + 𝒙!,"3$,& + 𝒙!,"7$,& + 𝒙!,",&3$ + 𝒙!,",&7$

− 6𝒙!,",& 																																																																																																																																						(13) 
 
Based on the aforementioned assumptions, the system of equations (11) can be reformulated  [23]: 

𝒙̇𝒊𝒋𝒌 = 𝒇3𝒙𝒊𝒋𝒌8 + 𝑫3𝒙𝒊3𝟏,𝒋,𝒌 + 𝒙𝒊7𝟏,𝒋,𝒌 + 𝒙𝒊,𝒋3𝟏,𝒌 + 𝒙𝒊,𝒋,𝒌3𝟏 + 𝒙𝒊,𝒋,𝒌7𝟏 	
− 		𝟔𝒙𝒊𝒋𝒌8																																																																																																																																				(14) 
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4. CNNS BASED IMAGE PROCESSING APPLICATIONS 
 

The CNNs would represent a general model for a class of circuits for which it reproduces the 
dynamics. In this thesis, many CNN cell models have been proposed. One of CNN applications is that image 
processing. Complex pattern formation is one of the interesting phenomena exhibited by CNNs [24]. 

 
4.1. Edge Extraction 

 
The aim here is to extract the edge of the input images shown in Fig. (7) (a) and (b), respectively. 

Where each pixel has at least one white neighbor. By proposing specific cloning templates. The initial 
conditions are chosen arbitrarily with fixed boundary conditions. So the output image is as shown in Fig. 
(7) (c) and (d), respectively. 

 

𝐴 = m
0 0 0
0 2 0
0 0 0

p ; 	𝐵 = m
−1 −1 −1
−1 8 −1
−1 −1 −1

p ; 		𝐼 = −1																																																																														(15) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. (7) Edge extraction simulation results (a) and (b) Binary input images. (d) and (c) output images of CNN. 

 
 
 
4.2. Corner Detection 
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The task here is to find the objects' corners by considering black pixels having at least five white 

neighbors and the input image as shown in Fig. (8)(a). By setting another cloning templates. The initial 
conditions are chosen arbitrarily with zero-flex boundary conditions. So the output image is as shown in 
Fig. (8)(b). 

 

𝐴 = m
0 0 0
0 1 0
0 0 0

p; 𝐵 = m
−1 −1 −1
−1 4 −1
−1 −1 −1

p; 𝐼 = −5																																																																											(16) 

 
 
 
 
 
 

 
Fig. (8) Corner detection simulation results (a) Input image and (b) Output image of CNN. 

 
4.3. Fogy Removal 

 
To eliminate Gaussian noise from the image shown in Fig. (9)(a) with a set of templates is proposed. 

The initial conditions are chosen arbitrarily with zero-flex boundary conditions. So the output image is as 
shown in Fig. (9)(b). The cloning templates are: 

 

A= m
0 1 0
1 2 1
0 1 0

p; 𝐵 = m
0 0 0
0 0 0
0 0 0

p;  𝐼 = 0																																																																																														(17) 
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Fig. (9) Gaussian noise removal simulation results (a) Input image and (b) Output image of CNN. 

 
5. REACTION-DIFFUSION CNNS BASED APPLICATIONS 
 

In many cases, every cell's behavior is chaotic and described by low diffusion coefficients, and zero-
flux boundary conditions had selected. Rich, unpredictable, and attractive dynamics are associated with the 
design of the cells of different systems. A chaotic attractor introduces the dynamic system's chaotic behavior 
is converted to beauty 3D forms such that one is shown in [22]. In practice, many chaotic dynamics systems 
have been investigated to mimic such networks' global behavior in 3D space like Lorenz, Rossler, and 
Chua's models or as FitzHugh-Nagumo neuron model in [23]. 

 
 

5.1. Generation of Turning patterns by RD-CNN 
 
The generation of complex patterns in RD-CNN can be obtained by suitably choosing the parameters 

of the proposed model. By considering specific RD-CNN model. The model is reformulated in the standard 
CNN. The initial state shown in Fig. (10)(a) and the output shown in Fig. (10)(b). 

 

with 1≤i≤M and 1≤j≤N. 
 

𝑥̇! = −𝑥! + (1 + 𝜇 + 𝜀)𝑦! − 𝑠𝑦" + 𝑖! + 𝐷!(𝑦!!"#,% + 𝑦!!&#,% + 𝑦!!,%"# + 𝑦!!,%&# − 4𝑦!!%)		

𝑥̇" = −𝑥" + 𝑠𝑦! + (1 + 𝜇 − 𝜀)𝑦" + 𝑖" + 𝐷"(𝑦"!"#,% + 𝑦"!&#,% + 𝑦"!,%"# + 𝑦"!,%&# − 4𝑦"!%)	
(18) 
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Fig. (10) Generation of turning patterns simulation results (a) Initial state and (b) Output Turing patterns. 

 
 

5.2. Generation of spiral waves By RD-CNN 
To generate a spiral wave, one considers the RD-CNN model (18) with different proposed 

parameters. Considering the initial states as shown in Fig. (11) (a) and (b), respectively, as the seed of a 
single wave. The result is a Spatio-temporal phenomenon of propagation in the spiral wave shown in Fig. 
(11) (c) and (d), respectively.  

 
 

 
Fig. (11) Spiral wave propagation simulation results (a) and (b) Initial states.  (c) Output spiral wave at T=300 Sec. and 

(d) Output spiral wave at T=1000 Sec. 
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6. CONCLUSIONS 
 

The shapes in 3D-CNNs are the fingerprint of the emergent phenomena. The approach presented in 
this paper gives the possibility to obtain many different dynamical models for the observation of nonlinear 
behavior in complex dynamics. The system has been designed and implemented by using different arrays 
cells of CNN using MATLAB environment. The simulation results had demonstrated a good approximation 
of the behavior of such complex systems based on CNNs with high percentage of enhacement. The RD-
CNNs can be regarded as vector coupled oscillators as spiral wave propagation. All the above spiral waves, 
and patterns can be used with secured communication systems and military applications. 
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